metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido[*N*,*N*-diethyl-*N*'-(2-pyridylmethylene)ethane-1,2-diamine]mercury(II)

Young-Inn Kim,^a Hoe-Joo Seo,^a Ji-Hoon Kim,^a You-Soon Lee^b and Sung Kwon Kang^b*

^aDepartment of Chemistry Education, Interdisciplinary Program of Advanced Information and Display Materials, and Center for Plastic Information Systems, Pusan National University, Busan 609-735, Republic of Korea, and ^bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea Correspondence e-mail: skkang@cnu.ac.kr

Received 25 December 2009; accepted 2 January 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.026; wR factor = 0.059; data-to-parameter ratio = 24.8.

The Hg atom in the title compound, $[HgCl_2(C_{12}H_{19}N_3)]$, adopts a distorted trigonal-bipyramidal geometry, being ligated by two Cl atoms and three N atoms of the *N*,*N*diethyl-*N'*-(2-pyridylmethylene)ethane-1,2-diamine ligand. The dihedral angle between the HgN₃ and HgCl₂ leastsquares planes is 88.6 (1)°. The Hg-N distances including the pyridine N and the ammonium N atom are about 0.20 Å longer than the Hg-N distance including the imino N atom.

Related literature

For general background to luminescent mercury compounds, see: Elena *et al.* (2006); Durantaye *et al.* (2006); Fan *et al.* (2009). For the syntheses and structures of these compounds, see: Kim *et al.* (2008); Seo *et al.* (2009).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.085, T_{\max} = 0.102$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	163 parameters
$wR(F^2) = 0.059$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
4039 reflections	$\Delta \rho_{\rm min} = -0.92 \text{ e} \text{ \AA}^{-3}$

17026 measured reflections

 $R_{\rm int} = 0.029$

4039 independent reflections

3124 reflections with $I > 2\sigma(I)$

 Table 1

 Selected bond lengths (Å).

-			
Hg1-Cl1	2.4088 (11)	Hg1-N8	2.336 (3)
Hg1-Cl2	2.4431 (11)	Hg1-N11	2.544 (3)
Hg1-N1	2.540 (3)	-	

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NO. 2009–0066594).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2606).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Durantaye, L. D. L., McCormick, T., Liu, X.-Y. & Wang, S. (2006). Dalton Trans. pp. 5675–5682.
- Elena, L.-T., Antoina, M. & Ceser, J. P. (2006). Polyhedron, 25, 1464–1470.
- Fan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). *Inorg. Chem.* 48, 6034–6043.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358.
- Seo, H.-J., Kim, Y.-I., Lee, Y.-S. & Kang, S. K. (2009). Acta Cryst. E65, m55. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2010). E66, m124 [doi:10.1107/S1600536810000103]

Dichlorido[N,N-diethyl-N'-(2-pyridylmethylene)ethane-1,2-diamine]mercury(II)

Y.-I. Kim, H.-J. Seo, J.-H. Kim, Y.-S. Lee and S. K. Kang

Comment

Much attention has been paid to the design and synthesis of luminescent mercury compounds for the detection and extraction of the mercury (Elena *et al.*, 2006; Durantaye *et al.*, 2006), among which, Hg(II) complexes with pyridine-containing ligands are of importance for their high luminescent efficiency (Fan *et al.*, 2009). Recently, we reported Hg(II) compounds with bis(2-pyridylmethyl)amine (Kim *et al.*, 2008) and with benzyl(2-pyridylmethyl)amine (Seo *et al.*, 2009) as a development of blue fluorescent materials. In this work, we prepared a Hg(II) complex with *N*,*N*-diethyl-*N*-pyridine-2-ylmethylene-ethene-1,2-diamine (depmed), and its structure and luminescent properties were investigated.

In the title compound, (I), the Hg atom is 5-coordinated by two Cl atoms and three N atoms of the tridentate depmed ligand. The coordination geometry around Hg atom is based on a distorted trigonal bipyramid with the equatorial plane defined by N8, Cl1, and Cl2 atoms, with the other N atoms occupying axial positions. The dihedral angle between the least-squares planes through the N1/N8/N11/Hg atoms and that through the HgCl₂ atoms is 88.6 (1)°; the bond angle of N1—Hg—N11 is 139.2 (1)°. The Hg–N1 and Hg–N11 bond distances are each about 0.20Å longer than the Hg–N8 bond distance, Table 1.

The free ligand (depmed) showed strong blue ($\lambda_{max,PL} = 491$ nm in DMF) fluorescent emissions upon 280 nm excitation, while Hg(depmed)Cl₂ displayed two blue emission ($\lambda_{max,PL} = 309$ and 389 nm in DMF) which was tentatively assigned to be an intraligand (IL) ${}^{1}\pi$ - π^{*} transition. The PL quantum yield (*f*) versus 9,10-diphenylanthracene was measured to be 0.29% and 0.04% for free ligand (depmed) and Hg(depmed)Cl₂, respectively.

Experimental

All of the reagents and solvents were purchased from Aldrich and used without further purification. The *N*,*N*-diethyl-*N*-pyridine-2-ylmethylene-ethene-1,2-diamine (*L*) was synthesized by reacting *N*,*N*-diethyl-ethylenediamine (15 mmol) and 2-pyridinecarboxaldehyde (15 mmol) in methanol (50 ml). The mixture was stirred for 3 h at room temperature and the solution was evaporated to dryness. The residue was extracted with dichloromethane to give depmed as yellow oil. A solution depmed (5 mmol) in methanol (15 ml) was added slowly to a solution of mercuric chloride (5 mmol) in methanol (15 ml). The mixture was stirred for 12 h at room temperature. The resultant precipitate was collected by filtration and washed several times with cool methanol. The precipitate was dried over vacuum in an oven at room temperature. The crystals were obtained by slow evaporation in a methanol solution. Yield: 53%. Anal. Calcd. for C₁₂H₁₉N₃Cl₂Hg: C, 30.23; H, 4.02; N, 8.81. Found: C, 29.97; H, 4.21; N, 8.76. ¹H-NMR (300 MHz, d₆-DMSO) δ ; 8.95 (1*H*, d, J=4.2 Hz), 8.57 (1*H*, s), 7.97 (1*H*, t, J=7.8 Hz), 7.62–7.68 (2*H*, m), 3.82 (2*H*, t, J=6.5 Hz), 2.94–3.08 (6*H*, m), 1.19 (6*H*, s).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ for aromatic- and methylene-H, and $1.5U_{eq}(C)$ for methyl-H atoms.

Figures

Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.

Dichlorido[N,N-diethyl-N'-(2-pyridylmethylene)ethane-1,2- diamine]mercury(II)

F(000) = 904

 $\theta = 2.5-26.4^{\circ}$ $\mu = 9.79 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.27 \times 0.24 \times 0.23 \text{ mm}$

 $D_{\rm x} = 1.948 {\rm Mg m}^{-3}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 5949 reflections

Crystal data
$[HgCl_2(C_{12}H_{19}N_3)]$
$M_r = 476.79$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 8.0028 (5) Å
<i>b</i> = 16.6507 (9) Å
c = 12.4541 (8) Å
$\beta = 101.630 \ (5)^{\circ}$
$V = 1625.47 (17) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector	3124 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.029$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002)	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
$T_{\min} = 0.085, T_{\max} = 0.102$	$h = -10 \rightarrow 10$
17026 measured reflections	$k = -22 \rightarrow 22$
4039 independent reflections	$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.026$	$w = 1/[\sigma^2(F_o^2) + (0.026P)^2 + 0.5659P]$ where $P = (F_o^2 + 2F_c^2)/3$

$wR(F^2) = 0.059$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.71 \text{ e} \text{ Å}^{-3}$
4039 reflections	$\Delta\rho_{min} = -0.92 \text{ e} \text{ Å}^{-3}$

163 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.208069 (19)	0.190628 (9)	0.561325 (12)	0.05266 (7)
C11	0.04834 (16)	0.20511 (8)	0.70474 (10)	0.0766 (3)
C12	0.06896 (15)	0.15227 (8)	0.37542 (9)	0.0756 (3)
N1	0.3474 (4)	0.0549 (2)	0.6108 (3)	0.0533 (8)
C2	0.2740 (6)	-0.0156 (3)	0.6201 (4)	0.0654 (11)
H2	0.1555	-0.0177	0.6057	0.078*
C3	0.3629 (7)	-0.0862 (3)	0.6499 (4)	0.0697 (12)
H3	0.3058	-0.1342	0.6553	0.084*
C4	0.5359 (7)	-0.0830 (3)	0.6708 (4)	0.0731 (13)
H4	0.5996	-0.1292	0.6915	0.088*
C5	0.6169 (6)	-0.0108 (3)	0.6612 (3)	0.0659 (11)
Н5	0.7353	-0.0078	0.6745	0.079*
C6	0.5184 (5)	0.0570 (2)	0.6313 (3)	0.0527 (9)
C7	0.5949 (5)	0.1352 (3)	0.6185 (3)	0.0584 (10)
H7	0.713	0.1391	0.6283	0.07*
N8	0.5056 (4)	0.19763 (19)	0.5946 (3)	0.0554 (8)
C9	0.5810 (6)	0.2749 (3)	0.5783 (4)	0.0706 (12)
H9A	0.6906	0.2671	0.5578	0.085*
H9B	0.599	0.3057	0.6458	0.085*
C10	0.4618 (7)	0.3196 (2)	0.4886 (4)	0.0721 (14)
H10A	0.5111	0.3715	0.4782	0.087*
H10B	0.451	0.2899	0.4206	0.087*
N11	0.2900 (5)	0.33175 (19)	0.5129 (3)	0.0545 (8)
C12	0.2909 (6)	0.3827 (2)	0.6098 (3)	0.0597 (10)
H12A	0.3544	0.3549	0.6736	0.072*
H12B	0.1743	0.388	0.6197	0.072*
C13	0.3658 (7)	0.4666 (3)	0.6073 (4)	0.0860 (15)
H13A	0.3604	0.4942	0.6742	0.129*
H13B	0.3016	0.496	0.5463	0.129*
H13C	0.4825	0.4627	0.5996	0.129*
C14	0.1738 (7)	0.3608 (3)	0.4138 (4)	0.0836 (15)
H14A	0.1783	0.3241	0.354	0.1*
H14B	0.2134	0.4128	0.3942	0.1*

supplementary materials

C15	-0.0096 (8)	0.3686 (4)	0.4267 (5)	0.112 (2)
H15A	-0.0782	0.3881	0.3595	0.168*
H15B	-0.0157	0.4057	0.4849	0.168*
H15C	-0.051	0.3171	0.444	0.168*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.04281 (9)	0.06545 (11)	0.05013 (10)	-0.00279 (7)	0.01033 (7)	0.00321 (7)
Cl1	0.0616 (7)	0.1078 (9)	0.0680 (7)	-0.0054 (6)	0.0312 (6)	-0.0045 (6)
C12	0.0637 (7)	0.0923 (8)	0.0615 (7)	-0.0041 (6)	-0.0097 (6)	-0.0122 (6)
N1	0.0474 (18)	0.065 (2)	0.0478 (18)	0.0010 (15)	0.0114 (15)	0.0030 (15)
C2	0.060 (3)	0.076 (3)	0.066 (3)	-0.002 (2)	0.025 (2)	0.011 (2)
C3	0.082 (3)	0.070 (3)	0.065 (3)	-0.001 (2)	0.033 (3)	0.011 (2)
C4	0.092 (4)	0.068 (3)	0.062 (3)	0.023 (3)	0.024 (3)	0.014 (2)
C5	0.057 (3)	0.080 (3)	0.059 (3)	0.020 (2)	0.009 (2)	0.000 (2)
C6	0.051 (2)	0.067 (2)	0.040 (2)	0.0014 (19)	0.0081 (17)	-0.0043 (17)
C7	0.037 (2)	0.080 (3)	0.058 (2)	0.003 (2)	0.0084 (18)	-0.014 (2)
N8	0.0451 (18)	0.066 (2)	0.057 (2)	-0.0078 (15)	0.0133 (16)	-0.0080 (16)
C9	0.052 (3)	0.069 (3)	0.095 (4)	-0.008 (2)	0.025 (3)	-0.004 (3)
C10	0.089 (4)	0.063 (3)	0.078 (3)	-0.019 (2)	0.050 (3)	-0.005 (2)
N11	0.065 (2)	0.0620 (19)	0.0372 (17)	-0.0039 (16)	0.0116 (16)	0.0066 (14)
C12	0.068 (3)	0.066 (3)	0.047 (2)	0.003 (2)	0.016 (2)	0.0030 (19)
C13	0.115 (4)	0.070 (3)	0.078 (3)	-0.006 (3)	0.031 (3)	-0.012 (3)
C14	0.115 (5)	0.080 (3)	0.048 (3)	-0.004 (3)	-0.003 (3)	0.019 (2)
C15	0.099 (5)	0.117 (5)	0.102 (4)	0.024 (4)	-0.024 (4)	0.018 (4)

Geometric parameters (Å, °)

Hg1—Cl1	2.4088 (11)	С9—Н9А	0.97
Hg1—Cl2	2.4431 (11)	С9—Н9В	0.97
Hg1—N1	2.540 (3)	C10—N11	1.480 (6)
Hg1—N8	2.336 (3)	C10—H10A	0.97
Hg1—N11	2.544 (3)	C10—H10B	0.97
N1—C2	1.328 (5)	N11—C14	1.470 (5)
N1—C6	1.341 (5)	N11—C12	1.473 (5)
C2—C3	1.385 (6)	C12—C13	1.524 (6)
С2—Н2	0.93	C12—H12A	0.97
C3—C4	1.357 (6)	C12—H12B	0.97
С3—Н3	0.93	С13—Н13А	0.96
C4—C5	1.384 (6)	С13—Н13В	0.96
C4—H4	0.93	C13—H13C	0.96
C5—C6	1.383 (6)	C14—C15	1.514 (8)
С5—Н5	0.93	C14—H14A	0.97
C6—C7	1.462 (6)	C14—H14B	0.97
C7—N8	1.262 (5)	C15—H15A	0.96
С7—Н7	0.93	C15—H15B	0.96
N8—C9	1.452 (5)	C15—H15C	0.96
C9—C10	1.511 (7)		

N8—Hg1—Cl1	122.54 (9)	С10—С9—Н9В	109.9
N8—Hg1—Cl2	115.75 (9)	Н9А—С9—Н9В	108.3
Cl1—Hg1—Cl2	121.35 (4)	N11—C10—C9	113.0 (3)
N8—Hg1—N1	67.63 (11)	N11-C10-H10A	109
Cl1—Hg1—N1	100.47 (8)	C9—C10—H10A	109
Cl2—Hg1—N1	95.24 (8)	N11—C10—H10B	109
N8—Hg1—N11	72.16 (12)	C9—C10—H10B	109
Cl1—Hg1—N11	106.49 (8)	H10A-C10-H10B	107.8
Cl2—Hg1—N11	96.14 (8)	C14—N11—C12	113.3 (4)
N1—Hg1—N11	139.24 (11)	C14—N11—C10	109.3 (4)
C2—N1—C6	117.3 (4)	C12—N11—C10	113.2 (4)
C2—N1—Hg1	128.9 (3)	C14—N11—Hg1	110.7 (3)
C6—N1—Hg1	113.9 (3)	C12—N11—Hg1	107.2 (2)
N1—C2—C3	124.1 (4)	C10-N11-Hg1	102.5 (2)
N1—C2—H2	117.9	N11—C12—C13	116.6 (3)
С3—С2—Н2	117.9	N11—C12—H12A	108.1
C4—C3—C2	117.9 (4)	C13—C12—H12A	108.1
С4—С3—Н3	121.1	N11—C12—H12B	108.1
С2—С3—Н3	121.1	C13—C12—H12B	108.1
C3—C4—C5	119.6 (4)	H12A—C12—H12B	107.3
C3—C4—H4	120.2	C12—C13—H13A	109.5
C5—C4—H4	120.2	C12—C13—H13B	109.5
C6—C5—C4	118.7 (4)	H13A—C13—H13B	109.5
С6—С5—Н5	120.6	C12—C13—H13C	109.5
С4—С5—Н5	120.6	H13A—C13—H13C	109.5
N1—C6—C5	122.4 (4)	H13B—C13—H13C	109.5
N1—C6—C7	115.8 (3)	N11—C14—C15	113.7 (4)
C5—C6—C7	121.8 (4)	N11-C14-H14A	108.8
N8—C7—C6	122.0 (4)	C15—C14—H14A	108.8
N8—C7—H7	119	N11-C14-H14B	108.8
С6—С7—Н7	119	C15-C14-H14B	108.8
C7—N8—C9	122.0 (4)	H14A—C14—H14B	107.7
C7—N8—Hg1	120.6 (3)	C14—C15—H15A	109.5
C9—N8—Hg1	117.2 (3)	C14—C15—H15B	109.5
N8—C9—C10	108.7 (4)	H15A—C15—H15B	109.5
N8—C9—H9A	109.9	C14—C15—H15C	109.5
С10—С9—Н9А	109.9	H15A—C15—H15C	109.5
N8—C9—H9B	109.9	H15B—C15—H15C	109.5

Fig. 1

